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ON UNILATERAL CONTACT OF TWO PLATES

ALIGNED AT AN ANGLE TO EACH OTHER

UDC 539.3+517.95A. M. Khludnev

The contact problem for two elastic plates aligned at a prescribed angle to each other is considered.
The set of contact points is assumed to be unknown in advance and to be determined only after the
problem is solved. Various formulations of the problem are given, and their equivalence is proved.
A complete set of boundary conditions fulfilled on the contact domain is found, and the character of
satisfaction of these conditions is described. The asymptotic properties of solutions are studied for
rigidity parameters of the contacting plates tending to infinity.
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INTRODUCTION

The variational approach used to describe contact interaction of solids with an unknown contact domain
turned out to be very effective. A classical example is the Signorini contact problem for an elastic solid and a rigid
solid in the absence of friction. The properties of this problem were studied in [1], which stimulated the research for
a wide class of contact problems with an unknown contact domain. Both two-dimensional and three-dimensional
contact problems were considered, as well as contact problems for plates and shells (see [2] and the references
therein). Equilibrium problems for elastic and inelastic solids containing cracks can also be classified as contact
problems if the boundary conditions of mutual non-penetration in the form of a system of equalities and inequalities
are imposed on the crack edges [3–5]. These conditions do not allow mutual penetration of the edges; hence, the
corresponding mathematical model of the crack is more preferable than the classical model with linear boundary
conditions on the crack edges.

Contact problems for bodies of different dimensions with an unknown contact area bear a certain analogy
with boundary-value problems of the crack theory, namely, the equilibrium equation for one body is formulated
in the domain containing a cut, whereas the boundary conditions on the cut edges are formulated as a system
of equalities and inequalities. The character and nature of these boundary conditions, however, differ from the
boundary conditions considered in the crack theory. Contact problems are of much interest from the viewpoint of
various applications, and their comprehensive mathematical analysis is extremely important.

A contact problem for two elastic plates is considered in the paper, and a full description of the boundary
conditions satisfied on the contact set is given. The asymptotic behavior of the solution is studied with variations
of model parameters characterizing the rigidity of the contacting bodies. The contact of two plates (upper and
lower ones) aligned at a certain angle α to each other is analyzed. Two models are examined (models A and B).
The first model implies that the lower plate is deformed in its plane, whereas the lower plate in the second model
is subjected to bending only. The equation of equilibrium for the upper plate is written for the domain with the
cut. The lower plate can be interpreted as a thin elastic obstacle for the upper plate. The problem of contact
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Fig. 1. Problem geometry.

between an elastic plate and an elastic beam was analyzed in a recent paper [6]. Thus, the beam plays the role of
a thin elastic obstacle for the plate. It should be noted that unilateral contact problems for plates were extensively
analyzed [7–10]. In particular, a thin rigid (non-deformable) obstacle for plates was considered in [10].

Let Ω ⊂ R
2 be a bounded domain with a smooth boundary Γ; the vector of the outward normal to this

boundary is denoted by q = (q1, q2). We assume that Ω corresponds to the mid-plane of the upper (horizontal)
plate. The mid-surface of the lower plate is denoted by G and is assumed to be a bounded domain with a smooth
boundary ∂G (see Fig. 1). The angle between Ω and G is denoted by α (α ∈ (0, π/2]). We assume that Ω ∩G = ∅
and Ω ∩ ∂G �= ∅. Let us denote γ0 = (∂G) \ Ω. In this case, we have ∂G = γ ∪ γ̄0. Let ν = (ν1, ν2) be the vector
of the normal to γ, which is located in the plane Ω. We use n = (n1, n2) to denote the unit vector of the inward
normal to ∂G, which is located in the plane G. We assume that γ is a connected set (in this particular case, it is
an interval) and γ ∩ Γ = ∅. Let Ωγ = Ω \ γ̄.

1. PROBLEM A

1.1. Formulation of Problem A. Let two elastic plates be aligned at an angle α to each other and contact
along the line γ in their natural state (see Fig. 1). We assume that the points of the upper plate can move only in the
z direction, and the points of the lower plate admit displacements in the mid-plane only. We give the full statement
of the problem, which includes several equivalent formulations: differential, variational, and mixed formulations.
Let us first consider the differential formulation of the problem. We have to find functions u(x) = (u1(x), u2(x)),
w(y), x = (x1, x2) ∈ G, and y = (y1, y2) ∈ Ωγ , such that

− div (Bε(u)) = g in G; (1)

Δ2w = f in Ωγ ; (2)

u = 0 on γ0; (3)

w = wq = 0 on Γ; (4)

un sinα+ w � 0, σn � 0, στ = 0, σn(un sinα+ w) = 0 on γ; (5)

[w] = [wν ] = 0, [m(w)] = 0, [tν(w)] sinα = −σn on γ. (6)

Here ε(u) = {εij(u)} and σ = {σij} are the strain and stress tensors (i, j = 1, 2), respectively,

σn = σijnjni, στ = σn− σn · n, στ = (σ1
τ , σ

2
τ ),

σn = (σ1jnj , σ2jnj), εij(u) = (ui,j + uj,i)/2, i, j = 1, 2,
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B = {bijkl} (i, j, k, l = 1, 2) is the tensor of elasticity moduli, bijkl ∈ L∞(G):

bijkl = bjikl = bijlk, bijklξklξij � c|ξ|2, c > 0,

[v] = v+ − v− is the jump of the function v on γ; the quantities v± refer to the positive and negative (with
respect to the normal ν) edges of the cut γ±. All functions with two subscripts are assumed to be symmetric
over these subscripts, i.e., ξij = ξji, etc. Summation is performed over repeated subscripts, and the functions
g = (g1, g2) ∈ L2(G) and f ∈ L2(Ω) are given. In addition,

wν =
∂w

∂ν
, wq =

∂w

∂q
, m(w) = κ1Δw + (1 − κ1)

∂2w

∂ν2
,

tν(w) =
∂

∂ν

(
Δw + (1 − κ1)

∂2w

∂s2

)
, (s1, s2) = (−ν2, ν1),

where κ1 is Poisson’s ratio for the upper plate; m(w) and tν(w) are the bending moment and the shear force for
the upper plate.

It should be noted that Eqs. (1) and (2) are equilibrium equations, and σ = Bε(u) is Hooke’s law [σ = σ(u)].
Relations (3) and (4) provide a clamped state of the plates on γ0 and Γ, respectively. The first inequality in (5)
describes mutual non-penetration of the plates. The equilibrium equation (2) is valid in the domain Ωγ with the
cut (crack) γ, and the boundary conditions (5) and (6) are formulated as a system of equalities and inequalities.

Let us consider the variational formulation of problem (1)–(6), which implies, in particular, the solution
existence. The differential formulation of this problem is equivalent to the variational formulation.

We consider the Sobolev spaces

H1
γ0

(G) = {v ∈ H1(G): v = 0 in γ0}, H2
0 (Ω) = {v ∈ H2(Ω): v = vq = 0 in Γ}

and the bilinear form

aΩ(w, w̄) =
∫
Ω

(w,11w̄,11 + w,22w̄,22 + κ1(w,11w̄,22 + w,22w̄,11) + 2(1 − κ1)w,12w̄,12).

Let (u, v)Ω denote the scalar product in L2(Ω), i.e., (u, v)Ω =
∫
Ω

uv. We denote

K = {(u, w): u = (u1, u2) ∈ H1
γ0

(G), w ∈ H2
0 (Ω), un sinα+ w � 0 in γ}

and consider the energy functional

E(u, w) = (σ(u), ε(u))G/2 − (g,u)G + aΩ(w,w)/2 − (f, w)Ω.

We can find the solution of the minimization problem

inf
(u,w)∈K

E(u, w), (7)

which is equivalent to the variational inequality

(u, w) ∈ K; (8)

(σ(u), ε(ū − u))G − (g, ū− u)G + aΩ(w, w̄ − w) − (f, w̄ − w)Ω � 0 ∀ (ū, w̄) ∈ K. (9)

Note that the functional E is coercive and weakly lower semi-continuous on the space [H1
γ0

(G)]2×H2
0 (Ω). Moreover,

the set K is weakly closed. Hence, the minimization problem (7) has a (unique) solution that satisfies the variational
inequality (8), (9).

Let us prove that problems (1)–(6) and (8), (9) are equivalent.
First, we obtain relations (1)–(6) from problem (8), (9) and find in which sense the boundary conditions (5)

and (6) are satisfied. Note that Eqs. (1) and (2) follow from Eq. (9) and are satisfied in the sense of distributions.
Indeed, substituting the test functions (ū, w̄) = (u ± ψ, w ± ϕ), ψ = (ψ1, ψ2) ∈ C∞

0 (G), and ϕ ∈ C∞
0 (Ωγ) into

Eq. (9), we obtain (1) and (2).
We choose (ū, w̄) = (u+ψ, w) as test functions in (9). Here ψ = (ψ1, ψ2) ∈ H1

γ0
(G) and ψn = ψn � 0 on γ.

As a result, we obtain
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(σ(u), ε(ψ))G − (g,ψ)G � 0. (10)

The following Green’s formula is valid [4, 11]:

(σ(u), ε(ψ))G = −(divσ(u),ψ)G − 〈σn,ψn〉1/2,∂G − 〈στ ,ψτ 〉1/2,∂G. (11)

Here the notation 〈 · , · 〉1/2,∂G indicates the duality pairing between H−1/2(∂G) and H1/2(∂G), where the space
H−1/2(∂G) is dual of H1/2(∂G); ψ = ψnn+ψτ . Taking into account the equilibrium equations

− divσ(u) = g in G

we use Eq. (10) to obtain

−〈σn,ψn〉1/2,∂G − 〈στ ,ψτ 〉1/2,∂G � 0. (12)

As the functions ψτ are arbitrary on ∂G, inequality (12) implies the relation

〈στ ,ψτ 〉1/2,∂G = 0. (13)

We consider the space H1/2
00 (γ) where the norm is determined as follows (see [4]):

‖v‖2

H
1/2
00 (γ)

= ‖v‖2
H1/2(γ) +

∫
γ

ρ−1v2.

Here ρ(y) = dist (y, ∂γ). We also introduce the space

H
3/2
00 (γ) =

{
v ∈ H

3/2
0 (γ):

∫
γ

|∇v|2
ρ

<∞
}

and use the following statement. Let the function u be defined on γ. We use ū to denote the extension of u by the
zero outside γ, i.e.,

ū =

{
u in γ,

0 in ∂G \ γ.

Then ū ∈ Hi/2(∂G) if and only if u ∈ H
i/2
00 (γ), i = 1, 3 (see [4, 11]). By virtue of this property and the equality

ψ = 0 on γ0, relation (13) can be written as

〈στ ,ψτ 〉001/2,γ = 0, (14)

where the notation 〈 · , · 〉001/2,γ means the duality pairing between H
1/2
00 (γ) and the dual space H−1/2

00 (γ). Relation
(14) yields the equality

στ = (σ1
τ , σ

2
τ ) = 0 in the sense H

−1/2
00 (γ), (15)

and inequality (12) yields the inequality

σn � 0 in the sense H
−1/2
00 (γ). (16)

We consider the extension of γ in the domain Ω up to a closed curve Σ of class C1,1, such that Σ ⊂ Ω. In
this case, the domain Ω is divided into two subdomains Ω1 and Ω2 with the boundaries Σ and Σ ∪ Γ, respectively.
We assume that the normal ν is defined on Σ, being an outward normal to Ω1. We choose (ū, w̄) = (u, w + ϕ) as
test functions in (9). Here ϕ � 0 on γ, ϕ ∈ H2

0 (Ω). As a result, we obtain the relation

aΩ(w,ϕ) − (f, ϕ)Ω � 0. (17)

We consider the space

V = {v ∈ H2(Ω1): Δ2v ∈ L2(Ω1)}.
For v ∈ V , we can determine m(v) ∈ H−1/2(Σ) and tν(v) ∈ H−3/2(Σ). Then, the following Green’s function is
valid [4, 12]:

(ϕ,Δ2v)Ω1 = aΩ1(ϕ, v) + 〈tν(v), ϕ〉3/2,Σ − 〈m(v), ϕν 〉1/2,Σ ∀ϕ ∈ H2(Ω1). (18)
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Here the notation 〈 · , · 〉i/2,Σ means the duality pairing between the space H−i/2(Σ) and the dual space Hi/2(Σ),
i = 1, 3. Green’s formula allows us to derive the following inequality from Eqs. (17) and (2):

−〈[m(w)], ϕν 〉1/2,Σ + 〈[tν(w)], ϕ〉3/2,Σ � 0.

As ϕν are arbitrary functions on Σ, we obtain

[m(w)] = 0 in the sense H−1/2(Σ); (19)

〈[tν(w)], ϕ〉3/2,Σ � 0 ∀ϕ ∈ H2
0 (Ω), ϕ � 0 on γ. (20)

We substitute (ū, w̄) = (u ± ψ, w ± ϕ) as test functions in (9), and ψn sinα = −ϕ on γ, ψ = (ψ1, ψ2) ∈
H1

γ0
(G), and ϕ ∈ H2

0 (Ω). In this case, ψn ∈ H
1/2
00 (γ). In addition, we assume that ϕ = 0 on Σ \ γ. Then,

ϕ ∈ H
3/2
00 (γ). This substitution yields

(σ(u), ε(ψ))G − (g,ψ)G + aΩ(w,ϕ) − (f, ϕ)Ω = 0. (21)

By virtue of Eqs. (1), (2), (15), and (19) and with the use of Green’s formulas (11) and (18), Eq. (21) yields

〈[tν(w)], ϕ〉3/2,Σ − 〈σn,ψn〉001/2,γ = 0.

As ϕ = 0 on Σ \ γ, the latter relation can be written in the form

〈[tν(w)], ϕ〉003/2,γ − 〈σn,ψn〉001/2,γ = 0. (22)

In our case, however, 〈σn,ψn〉003/2,γ = 〈σn,ψn〉001/2,γ ; hence, Eq. (22) yields

[tν(w)] sinα = −σn in the sense H
−1/2
00 (γ). (23)

We choose (ū, w̄) = (u + ψ, w + ϕ) as a test function in (9), with ψn sinα + ϕ � 0 on γ, ψ = (ψ1, ψ2) ∈ H1
γ0

(G),
and ϕ ∈ H2

0 (Ω). As a result, we obtain

(σ(u), ε(ψ))G − (g,ψ)G + aΩ(w,ϕ) − (f, ϕ)Ω � 0.

Applying Green’s formulas (11) and (18) to this inequality, by virtue of Eqs. (1), (2), and (15)–(19), we obtain

〈[tν(w)], ϕ〉3/2,Σ − 〈σn,ψn〉001/2,γ � 0 ∀ (ψ, ϕ) ∈ K. (24)

Inequality (24) ensures the exact formulation of the relations [see (5) and (6)]

σn � 0, [tν(w)] sinα = −σn on γ.

It is also worth noting that relations (16), (20), and (23) follow from inequality (24).
Choosing (ū, w̄) = (0, 0) and (ū, w̄) = 2(u, w) in (9), we obtain the relation

〈[tν(w)], w〉3/2,Σ − 〈σn,un〉001/2,γ = 0,

which is the exact formulation of the last relations in Eqs. (5) and (6).
The above-discussed situation implies that the first term in (24) is independent of the choice of Σ. It is only

important that the curve Σ satisfies the indicated conditions of smoothness. Moreover, the first term in (24) is
independent of the values of ϕ on Σ \ γ̄. In other words, if ϕ1 = ϕ2 on γ, then we have

〈[tν(w)], ϕ1〉3/2,Σ = 〈[tν(w)], ϕ2〉3/2,Σ.

The system of the boundary conditions (3)–(6) is complete; in particular, the variational inequality (8), (9)
can be derived from Eqs. (1)–(6).

Let us discuss the so-called mixed formulation of problem (1)–(6). In contrast to the differential and varia-
tional formulations, the mixed formulation contains a set of admissible stresses and moments. The plate displace-
ments are formally found from rather wide classes of functions, which do not allow any boundary conditions to be
discussed because of insufficient smoothness of the boundary. Nevertheless, the proposed formulation of the problem
contains all necessary information on displacements. We use the relation between m = {mij} and ∇∇w = {w,ij}
in the form m = D∇∇w,D = {dijkl}, and dijkl = djikl = dklij (i, j, k, l = 1, 2). Further, we will need a particular
form of D corresponding to the relations

m11 = w,11 + κ1w,22, m22 = w,22 + κ1w,11, m12 = (1 − κ1)w,12.
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We write problem (1)–(6) in the following equivalent form. We have to find functions u(x) = (u1(x), u2(x)),
σ(x) = {σij(x)}, w(y), and m(y) = {mij(y)} (i, j = 1, 2; x ∈ G and y ∈ Ωγ) such that

− divσ = g in G; (25)

B−1σ = ε(u) in G; (26)

∇∇m = f in Ωγ ; (27)

D−1m = ∇∇w in Ωγ , (28)

u = 0 on γ0; (29)

w = wq = 0 on Γ; (30)

un sinα+ w � 0, σn � 0, στ = 0, σn(un sinα+ w) = 0 on γ; (31)

[w] = [wν ] = 0, [mν ] = 0, [T ν(m)] sinα = −σn on γ. (32)

Here

∇∇m = mij,ij , mν = mijνjνi,

T ν(m) = mij,ksksjνi +mij,jνi, (s1, s2) = (−ν2, ν1).
The tensor B−1 is obtained by inversion of Hooke’s law σ = Bε(u), and the tensor D−1 is obtained by inversion of
the law m = D∇∇w.

In addition to Eq. (22), we need the following variant of Green’s formula (see [4]). If m = {mij} (i, j = 1, 2)
and m ∈ L2(Ω1) and ∇∇m ∈ L2(Ω1), we can determine mν ∈ H−1/2(Σ) and T ν(m) ∈ H−3/2(Σ) with

(ϕ,mij,ij)Ω1 = (ϕ,ij ,mij)Ω1 + 〈T ν(m), ϕ〉3/2,Σ − 〈mν , ϕν〉1/2,Σ ∀ϕ ∈ H2(Ω1).

We introduce a set of admissible stresses and moments

L = {(σ̄, m̄): σ̄, div σ̄ ∈ L2(G), m̄,∇∇m̄ ∈ L2(Ωγ),

σ̄n � 0, σ̄τ = 0, [m̄ν ] = 0, [T ν(m̄)] sinα = −σ̄n on γ}.
Here σ̄ = {σ̄ij} and m̄ = {m̄ij}, i, j = 1, 2; the boundary conditions for σ̄ and m̄ in determining L are satisfied in
the following sense:

σ̄τ = (σ̄1
τ , σ̄

2
τ ) = 0 in the sense H

−1/2
00 (γ),

[m̄ν ] = 0 in the sense H
−1/2
00 (Σ).

The inequality σ̄n � 0 and the equality [T ν(m̄)] sinα = −σ̄n are satisfied in the sense

〈[T ν(m̄)], w̄〉3/2,Σ − 〈σ̄n, ūn〉001/2,γ � 0 ∀ (ū, w̄) ∈ K.

We multiply Eqs. (26) and (28) by σ̄ − σ and m̄ −m, respectively, integrate them with respect to G and Ωγ , and
summarize. Here (σ̄, m̄) ∈ L. As a result, we obtain the following formulation of the problem. We have to find
functions u(x) = (u1(x), u2(x)), σ(x) = {σij(x)}, w(y), and m(y) = {mij(y)} (i, j = 1, 2; x ∈ G and y ∈ Ωγ)
such that

u ∈ L2(G), w ∈ L2(Ωγ), (σ,m) ∈ L; (33)

− divσ = g in G; (34)

∇∇m = f in Ωγ ; (35)

(B−1σ, σ̄ − σ)G + (u, div σ̄ − div σ)G + (D−1m, m̄−m)Ωγ

−(w,∇∇m̄−∇∇m)Ωγ � 0 ∀ (σ̄, m̄) ∈ L. (36)

Relations (33)–(36) represent the mixed formulation of problem (1)–(6). It should be noted that the dis-
placements u and w in this formulation are sought in the spaces L2; therefore, problem (33)–(36) does not contain
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any boundary conditions for displacements. It should be also noted that problem (1)–(6) is equivalent to problem
(33)–(36). To prove this fact, it suffices to derive (1)–(6) from (33)–(36) (see below). Equation (36) implies that
the following equations are valid in the sense of distributions:

B−1σ = ε(u) in G, D−1m = ∇∇w in Ωγ . (37)

Thus, by virtue of Eq. (33), we obtain inclusions u = (u1, u2) ∈ H1(G) and w ∈ H2(Ωγ). This means that the
functions u and w are actually more smooth than in Eq. (33), and we can speak about the boundary conditions for
displacements.

From Eqs. (33)–(36), we can derive the boundary conditions (4). We show that

[w] = [wν ] = 0 on γ. (38)

For this purpose, we find the solution w̃ of the problem

Δ2w̃ = f in Ωγ ; (39)

w̃ = w̃q = 0 on Γ; (40)

m(w̃) = ϕ, tν(w̃) = ξ on γ±, (41)

where ϕ and ξ are arbitrary functions in L2(γ). Problem (39)–(41) admits a variational formulation. We have to
fund a function w̃, such that

w̃ ∈ H2
Γ(Ωγ); (42)

aΩγ (w̃, v) − (f, v)Ωγ − (ξ, [v])γ + (ϕ, [vν ])γ = 0 ∀ v ∈ H2
Γ(Ωγ), (43)

where
H2

Γ(Ωγ) = {v ∈ H2(Ωγ): v = vq = 0 on Γ}.
The solution w̃ of problem (42), (43) satisfies the conditions

[m(w̃)] = 0 in the sense H−1/2(Σ),

[tν(w̃)] = 0 in the sense H−3/2(Σ).

By choosing the test functions in Eq. (36) in the form (σ̄, m̄) = (σ,m) ± (0, m̃), m̃ = {m̃ij} (i, j = 1, 2), and
m̃ = D∇∇w̃, we obtain the relation

(D−1m, m̃)Ωγ − (w,∇∇m̃)Ωγ = 0,

which implies, by virtue of Eq. (37), that

〈T ν(m̃), [w]〉3/2,Σ − 〈m̃ν , [wν ]〉1/2,Σ = 0.

Here T ν(m̃) = tν(w̃) and m̃ν = m(w̃) (by virtue of the previous comments, the jumps of these quantities on Σ are
equal to zero). Equations (42) and (43) yield the relation

〈T ν(m̃), [v]〉3/2,Σ − 〈m̃ν , [vν ]〉1/2,Σ = (ξ, [v])γ − (ϕ, [vν ])γ ∀ v ∈ H2
Γ(Ωγ).

Hence, we have

(ξ, [w])γ − (ϕ, [wν ])γ = 0,

and the boundary conditions (38) are satisfied owing to the arbitrariness of ϕ and ξ. In particular, we obtain
w ∈ H2

0 (Ω).
Let us prove that the function u in (33)–(36) satisfies the condition

u = 0 on γ0. (44)

We recall that u = (u1, u2) ∈ H1(G). We divide γ0 into two parts: γ0 = γ1 ∪ γ2, where γi (i = 1, 2) are smooth
curves and introduce the notation

H1
γ1

(G) = {v ∈ H1(G): v = 0 on γ1}.
Let ξ = (ξ1, ξ2) ∈ L2(γ2) be an arbitrary function. There exists a solution of the problem
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ũ = (ũ1, ũ2) ∈ H1
γ1

(G); (45)

(σ(ũ), ε(v))G − (g,v)G + (ξ,v)γ2 = 0 ∀v = (v1, v2) ∈ H1
γ1

(G), (46)

where σ(ũ) = Bε(ũ). Obviously, this solution satisfies the relations

− div (Bε(ũ)) = g in G,

ũ = 0 on γ1,

σ(ũ)n = 0 on γ,

σ(ũ)n = ξ on γ2.

We denote σ̃ = σ(ũ) and choose a cut-off function η, η = 1 in a small vicinity of a fixed point on γ2. In this case,
we have ±(ησ̃, 0) ∈ L. We choose (σ̄, m̄) = (σ,m) ± (ησ̃, 0) as a test function in Eq. (36). Then, we obtain

(B−1σ, ησ̃)G + (u, div (ησ̃))G = 0

and, hence, by virtue of Eq. (37),

〈(ησ̃)n,u〉1/2,∂G = 0.

This relation can be written as

〈σ̃n, ηu〉1/2,∂G = 0. (47)

Simultaneously, identity (46) yields the relation

〈σ̃n,v〉1/2,∂G = (ξ,v)γ2 ∀v = (v1, v2) ∈ H1
γ1

(G). (48)

As ηu = (ηu1, ηu2) ∈ H1
γ1

(G), we find the following relation from Eqs. (47) and (48):

(ξ, ηu)γ2 = 0.

By virtue of the arbitrariness of ξ, the equality ηu = 0 is satisfied on γ2, which yields the necessary boundary
condition (44).

Let us prove that the solution of problem (33)–(36) satisfies the boundary condition

un sinα+ w � 0 on γ. (49)

We consider the solution w̃ of the problem

w̃ ∈ H2
Γ(Ωγ); (50)

aΩγ (w̃, v) − (f, v)Ωγ − (ϕ, v)γ+ = 0 ∀ v ∈ H2
Γ(Ωγ), (51)

where ϕ ∈ L2(γ) is an arbitrary function (ϕ � 0). The subscript γ+ means that we use the trace of the function v

on the edge γ+. The solution of this problem satisfies the relations

Δ2w̃ = f in Ωγ ,

w̃ = w̃q = 0 on Γ,

m(w̃) = 0 on γ±,

tν(w̃) = ϕ on γ+, tν(w̃) = 0 on γ−.

We also find the solution ũ of the problem

ũ = (ũ1, ũ2) ∈ H1
γ0

(G); (52)

(σ(ũ), ε(v))G − (g,v)G − (ϕ sinα, vn)γ = 0 ∀v = (v1, v2) ∈ H1
γ0

(G), (53)

where vn = vn and σ(ũ) = Bε(ũ). Obviously, ũ satisfies the equations and boundary conditions

− div (Bε(ũ)) = g in G,
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ũ = 0 on γ0,

σn(ũ) = −ϕ sinα, στ (ũ) = 0 on γ.

We determine the tensors σ̃ = σ(ũ), m̃ = {m̃ij} (i, j = 1, 2), and m̃ = D∇∇w̃. Then the function (σ̄, m̄) =
(σ,m) + (σ̃, m̃) can be chosen in Eq. (36) as a test function. Indeed, we have σ̃n � 0, σ̃τ = 0, [m̃ν ] = 0 on γ.
Moreover, identity (51) implies that

〈[T ν(m̃)], w̄〉3/2,Σ = (ϕ, w̄)γ ∀ w̄ ∈ H2
0 (Ω),

and Eq. (53) yields

−〈σ̃n, ūn〉001/2,γ = (ϕ, ūn sinα)γ ∀ ū = (ū1, ū2) ∈ H1
γ0

(G).

Summarizing two last relations, we obtain the equality

〈[T ν(m̃)], w̄〉3/2,Σ − 〈σ̃n, ūn〉001/2,γ = (ϕ, w̄ + ūn sinα)γ . (54)

If w̄ + ūn sinα � 0 on γ, i.e., (ū, w̄) ∈ K, then the right side of Eq. (54) is non-negative and (σ̃, m̃) ∈ L; hence,
(σ̄, m̄) = (σ,m) + (σ̃, m̃) ∈ L. Therefore, substituting (σ̄, m̄) into Eq. (36), we obtain

(B−1σ, σ̃)G + (u, div σ̃)G + (D−1m, m̃)Ωγ − (w,∇∇m̃)Ωγ � 0.

From here, we obtain the inequality

〈[T ν(m̃)], w〉3/2,Σ − 〈σ̃n,un〉001/2,γ � 0

and [by virtue of Eq. (54)], the inequality

(ϕ,w + un sinα)γ � 0.

As the functions ϕ � 0 are arbitrary, we obtain the inequality w + un sinα � 0 on γ, which supports the validity
of Eq. (49).

Finally, we demonstrate that the solution of problem (33)–(36) satisfies the boundary condition

σn(un sinα+ w) = 0 on γ. (55)

We choose (σ̄, m̄) = (0, 0) and (σ̄, m̄) = 2(σ,m) as test functions in Eq. (36). Then, we obtain

(B−1σ, σ)G + (u, div σ)G + (D−1m,m)Ωγ − (w,∇∇m)Ωγ = 0,

and, hence,

〈[T ν(m)], w〉3/2,Σ − 〈σn,un〉003/2,γ = 0,

which means [with allowance for the last relation in (32)] that Eq. (55) is valid.
1.2. Passage to the Limit in Problem A. For the sake of simplicity, some parameters in problem (1)–(6)

are assumed to be equal to unity. In reality, however, the model contains a number of physical and geometrical
parameters, and it would be of undoubted interest to consider the dependences on these parameters. Let us pass
to the limit with respect to the parameter of plate rigidity. For this purpose, we consider two cases.

1. Instead of Hooke’s law σ = Bε(u) in Eq. (1), we consider a family of laws

σβ = β−1Bε(u), β > 0, (56)

and pass to the limit as β → 0, which corresponds to the case where the lower plate rigidity tends to infinity. The
limit problem describes the contact of the upper plate with a thin rigid (non-deformable) obstacle.

2. Instead of Eq. (2), we consider a family of equations

β−1Δ2w = f, β > 0

and pass to the limit as β → 0, which describes an increase in the upper plate rigidity to infinity. In the limit
problem, the lower plate contacts a rigid obstacle on γ.
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First we consider case 1. For an arbitrary fixed β > 0, we have a unique solution of the problem

(uβ , wβ) ∈ K; (57)

(σβ(uβ), ε(ū − uβ))G − (g, ū− uβ)G + aΩ(wβ , w̄ − wβ) − (f, w̄ − wβ)Ω � 0 ∀ (ū, w̄) ∈ K (58)

[σβ(uβ) = σβ were determined in (56)]. Substituting (ū, w̄) = (0, 0) and (ū, w̄) = 2(uβ, wβ) as test functions
in (58), we find

(σβ(uβ), ε(uβ))G − (g,uβ)G + aΩ(wβ , wβ) − (f, wβ)Ω = 0. (59)

Relation (59) yields two estimates

‖wβ‖H2
0(Ω) � c1, β−1‖uβ‖2

H1
γ0

(G) � c2

with constants c1 and c2, which are uniform in terms of β. We can assume that a subsequence with the previous
notation uβ , wβ is convergent as β → 0:

wβ → w0 weakly in H2
0 (Ω),

uβ → 0 strongly in H1
γ0

(G).

As uβn sinα+ wβ � 0 on γ, the limit function w0 satisfies the inequality

w0 � 0 on γ. (60)

We choose w̄ ∈ H2
0 (Ω) and w̄ � 0 on γ. Then, we have (0, w̄) ∈ K. Substituting the element (0, w̄) as a test

function in (58), we obtain

aΩ(wβ , w̄ − wβ) − (f, w̄ − wβ)Ω � β−1(σ(uβ), ε(uβ))G − (g,uβ)G.

As we have

lim inf
β→0

1
β

(σ(uβ), ε(uβ))G � 0,

the previous inequality implies that

w0 ∈M ; (61)

aΩ(w0, w̄ − w0) − (f, w̄ − w0)Ω � 0 ∀ w̄ ∈M. (62)

Here

M = {v ∈ H2
0 (Ω): v � 0 on γ}.

Problem (61), (62) describes the contact between a plate and a thin rigid obstacle aligned along γ. As previously,
in problem (61), (62), we can find a full system of boundary conditions satisfied on γ, which have the form

[w0] = [w0
ν ] = 0, [m(w0)] = 0 on γ,

w0 � 0, [tν(w0)] � 0, [tν(w0)]w0 = 0 on γ.

Let us consider case 2. For any arbitrary fixed β > 0, there exists a unique solution of the variational
inequality

(uβ , wβ) ∈ K; (63)

(σ(uβ), ε(ū− uβ))G − (g, ū − uβ)G + β−1aΩ(wβ , w̄ − wβ) − (f, w̄ − wβ)Ω � 0 ∀ (ū, w̄) ∈ K. (64)

Inequality (64) yields the relation

(σ(uβ), ε(uβ))G − (g,uβ)G + β−1aΩ(wβ , wβ) − (f, wβ)Ω = 0,

which ensures the validity of the estimates uniform in β:

β−1‖wβ‖2
H2

0 (Ω) � c3, ‖uβ‖H1
γ0

(G) � c4.

Choosing the subsequence, we can assume the following convergence as β → 0:
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wβ → 0 strongly in H2
0 (Ω),

uβ → u0 weakly in H1
γ0

(G).

Obviously, the limit function u0 satisfies the inequality

u0n � 0 on γ. (65)

Choosing the test functions in (64) in the form (ū, 0), ūn � 0 on γ, ū = (ū1, ū2) ∈ H1
γ0

(G), we obtain

(f, wβ)Ω + (σ(uβ), ε(ū− uβ))G − (g, ū− uβ)G � β−1aΩ(wβ , wβ). (66)

By virtue of the relation

lim inf
β→0

1
β
aΩ(wβ , wβ) � 0

we can pass to the lower limit in (66), which yields the variational inequality

u0 ∈ N ; (67)

(σ(u0), ε(ū− u0))G − (g, ū − u0)G � 0 ∀ ū ∈ N, (68)

where

N = {v = (v1, v2) ∈ H1
γ0

(G): vn � 0 on γ}.
Note that the limit problem (67), (68) coincides with the classical Signorini problem in the domain G (see

[1]).

2. PROBLEM B

2.1. Formulation of Problem B. We consider the case where both plates experience bending only. The
problem geometry is the same as that used in Problem A (see Fig. 1). First we consider the differential formulation
of the problem. We have to find functions v(x) and w(y) [x = (x1, x2) ∈ G and y = (y1, y2) ∈ Ωγ ], such that

Δ2v = h in G; (69)

Δ2w = f in Ωγ ; (70)

v = vn = 0 on γ0; (71)

w = wq = 0 on Γ; (72)

w − v cosα � 0, tn(v)(w − v cosα) = 0 on γ; (73)

[w] = [wν ] = 0, [m(w)] = 0 on γ; (74)

tn(v) � 0, m(v) = 0, [tν(w)] cosα = −tn(v) on γ. (75)

Here

vn =
∂v

∂n
, m(w) = κ1Δw + (1 − κ1)

∂2w

∂ν2
, tν(w) =

∂

∂ν

(
Δw + (1 − κ1)

∂2w

∂s2

)
.

The values of m(v) and tn(v) are determined similar to m(w) and tν(w):

m(v) = κ2Δv + (1 − κ2)
∂2v

∂n2
, tn(v) =

∂

∂n

(
Δv + (1 − κ2)

∂2v

∂τ2

)
.

Here κ2 is Poisson’s ratio for the second plate; (τ1, τ2) = (−n2, n1). The function v describes the vertical (normal)
displacements of the lower plate, and the functions h ∈ L2(G) and f ∈ L2(Ω) are assumed to be given.

Below we prove the solvability of problem (69)–(75). For this purpose, we use the variational formulation of
the problem.
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We introduce the Sobolev space

H2
γ0

(G) = {v ∈ H2(G): v = vn = 0 on γ0}
and a set of admissible displacements

S = {(v, w): v ∈ H2
γ0

(G), w ∈ H2
0 (Ω), w − v cosα � 0 on γ}.

For the lower plate, we use the following bilinear form:

aG(v, v̄) =
∫
G

(v,11v̄,11 + v,22v̄,22 + κ2(v,11v̄,22 + v,22v̄,11) + 2(1 − κ2)v,12v̄,12).

We consider the energy functional

Π(v, w) = aG(v, v)/2 + aΩ(w,w)/2 − (h, v)G − (f, w)Ω

and the minimization problem
inf

(v,w)∈S
Π(v, w), (76)

which is equivalent to the variational inequality
(v, w) ∈ S; (77)

aG(v, v̄ − v) + aΩ(w, w̄ − w) − (h, v̄ − v)G − (f, w̄ − w)Ω � 0 ∀ (v̄, w̄) ∈ S. (78)

The set S is weakly closed in the space H2
γ0

(G) × H2
0 (Ω), and the functional Π is coercive and weakly lower

semi-continuous on this space. Hence, the problem of minimization (76) has a solution satisfying the variational
inequality (77), (78). This solution is unique.

From (77) and (78), we derive the equations and boundary conditions (69)–(75) and find in which sense
conditions (73)–(75) are satisfied.

Note that Eqs. (69) and (70) follow from (78) and are satisfied in the sense of distributions. Indeed, we
can substitute the test functions (v̄, w̄) = (v ± ϕ,w ± ψ), where ϕ ∈ C∞

0 (G) and ψ ∈ C∞
0 (Ωγ), in Eq. (78), which

implies the validity of Eqs. (69) and (70).
As in Sec. 1, we consider the extension of the curve γ up to a closed curve Σ of class C1,1, such that Σ ⊂ Ω.

We assume that the vector ν = (ν1, ν2) is defined on the entire curve Σ, being an outward vector to Ω1. We choose
(v̄, w̄) = (v, w + ψ) as test functions in (78), with ψ � 0 on γ, ψ ∈ H2

0 (Ω). From here we obtain the inequality

aΩ(w,ψ) − (f, ψ)Ω � 0. (79)

Green’s formula (18) in combination with Eq. (70) allows us to obtain the following inequality from Eq. (79):

−〈[m(w)], ψν〉1/2,Σ + 〈[tν(w)], ψ〉3/2,Σ � 0.

As ψν are arbitrary on Σ, we obtain

[m(w)] = 0 in the sense H−1/2(Σ); (80)

〈[tν(w)], ψ〉3/2,Σ � 0 ∀ψ ∈ H2
0 (Ω), ψ � 0 on γ. (81)

We choose (v̄, w̄) = (v + ϕ,w) as test functions in (78), with ϕ ∈ H2
γ0

(G), ϕ � 0 on γ. Then, we obtain the
inequality

aG(v, ϕ) − (h, ϕ)G � 0. (82)

With allowance for the equilibrium equation (69) and a formula of the form (18), we obtain the following relation
for the domain G:

−〈m(v), ϕn〉1/2,∂G + 〈tn(v), ϕ〉3/2,∂G � 0. (83)

Note that n is the inward normal to ∂G; hence, we have the plus sign at the second term in inequality (83) and
the minus sign at the first term. In our case, we have ϕ = ϕn = 0 on ∂G \ γ. Hence, we obtain ϕ ∈ H

3/2
00 (γ) and

ϕn ∈ H
1/2
00 (γ). Therefore, we can write inequality (83) in the form

−〈m(v), ϕn〉001/2,γ + 〈tn(v), ϕ〉003/2,γ � 0 ∀ϕ ∈ H
3/2
00 (γ), ϕ � 0 on γ,
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whence there follow two conditions

m(v) = 0 in the sense H
−1/2
00 (γ); (84)

tn(v) � 0 in the sense H
−3/2
00 (γ). (85)

Similarly, assuming that ψ = 0 outside γ, i.e., ψ = 0 on Σ \ γ, we obtain the following relation from Eq. (81):

[tν(w)] � 0 in the sense H
−3/2
00 (γ). (86)

Substituting (v̄, w̄) = (v, w) ± (ϕ, ψ) as test functions in (78), where (ϕ, ψ) ∈ S and −ϕ cosα+ ψ = 0 on γ,
we obtain

aG(v, ϕ) + aΩ(w,ψ) − (h, ϕ)G − (f, ψ)Ω = 0.

By virtue of Eqs. (69), (70), (80), and (84), this relation yields

〈tn(v), ϕ〉3/2,∂G + 〈[tν(w)], ψ〉3/2,Σ = 0.

Assuming that ψ = 0 on Σ outside γ, we find

[tν(w)] cosα = −tn(v) in the sense H
−3/2
00 (γ). (87)

We choose (v̄, w̄) = (v, w) + (ϕ, ψ) in (78), with (ϕ, ψ) ∈ S. As a result, we obtain

aG(v, ϕ) + aΩ(w,ψ) − (h, ϕ)G − (f, ψ)Ω � 0 ∀ (ϕ, ψ) ∈ S.

Hence,

〈tn(v), ϕ〉003/2,γ + 〈[tν(w)], ψ〉3/2,Σ � 0 ∀ (ϕ, ψ) ∈ S. (88)

The resultant inequality yields the exact formulation of the boundary conditions

tn(v) � 0, [tν(w)] cosα = −tn(v) on γ.

Note that Eqs. (86) and (87) can also be derived from Eq. (88).
Substituting (v̄, w̄) = (0, 0) and (v̄, w̄) = 2(v, w) as test functions into (78), we obtain

aG(v, v) + aΩ(w,w) − (h, v)G − (f, w)Ω = 0.

Hence,

〈tn(v), v〉003/2,γ + 〈[tν(w)], w〉3/2,Σ = 0. (89)

The resultant relation is the exact formulation of the boundary conditions [see Eqs. (73) and (75)]

[tν(w)] cosα = −tn(v), tn(v)(w − v cosα) = 0 on γ.

To conclude, we should note that the variational inequality (77) and (78) can be derived from (69)–(75).
Thus, the system of the boundary conditions (73)–(75) is complete on γ.

2.2. Passing to the Limit in Problem B. We study the limit transition with a vanishing parameter
characterizing plate rigidity. For this purpose, instead of Eq. (69), we consider a family of equations depending on
the parameter β:

β−1Δ2v = h, β > 0.

The problem reduces to justification of the limit transition for β → 0, which corresponds to rigidity of the lower
plate tending to infinity.

We consider the variational formulation of the problem for each fixed value β > 0. There exists a unique
solution vβ , wβ of the following problem:

(vβ , wβ) ∈ S; (90)

β−1aG(vβ , v̄ − vβ) + aΩ(wβ , w̄ − wβ) − (h, v̄ − vβ)G − (f, w̄ − wβ)Ω � 0 ∀ (v̄, w̄) ∈ S. (91)

Substituting (v̄, w̄) = (0, 0), (v̄, w̄) = 2(vβ , wβ) into (91), we obtain the equality

β−1aG(vβ , vβ) + aΩ(wβ , wβ) − (h, vβ)G − (f, wβ)Ω = 0, (92)
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which yields two estimates
‖wβ‖2

H2
0 (Ω) � c5, β−1‖vβ‖2

H2
γ0

(G) � c6 (93)

with constant c5 and c6 uniform in β. We assume that the subsequence with the previous notation vβ , wβ possesses
the following property as β → 0:

wβ → w0 weakly in H2
0 (Ω), (94)

vβ → 0 strongly in H2
γ0

(G). (95)
As −vβ cosα+ wβ � 0 on γ, the limit function w0 satisfies the inequality

w0 � 0 on γ. (96)
We choose the test functions in inequality (91) in the form (0, w̄), with w̄ ∈ H2

0 (Ω), w̄ � 0 on γ. Then, we obtain
aΩ(wβ , w̄ − wβ) � β−1aG(vβ , vβ) + (h, vβ)G − (f, w̄ − wβ)Ω.

As we have

lim inf
β→0

1
β
aG(vβ , vβ) � 0,

the above-derived inequality yields
w0 ∈M ; (97)

aΩ(w0, w̄ − w0) − (f, w̄ − w0)Ω � 0 ∀ v̄ ∈M, (98)
where

M = {u ∈ H2
0 (Ω): u � 0 on γ}.

Thus, the limit problem (97), (98) describes the contact of the upper plate with an infinitely thin rigid obstacle
aligned along γ.

Actually, we can demonstrate that the convergence is stronger than that in (94) and (95). To prove this
statement, we should recall that Eq. (92) implies that

lim sup
β→0

1
β
aG(vβ , vβ) = lim sup

β→0
{−aΩ(wβ , wβ) + (h, vβ)Ω + (f, wβ)Ω}

� lim sup
β→0

{−aΩ(wβ , wβ)} + lim sup
β→0

(h, vβ)G + lim sup
β→0

(f, wβ)Ω

� −aΩ(w0, w0) + (f, w0)Ω.
Simultaneously, it follows from Eq. (98) that

aΩ(w0, w0) = (f, w0)Ω. (99)
Thus, the above-described reasoning leads us to the relations

0 � lim inf
β→0

1
β
aG(vβ , vβ) � lim sup

β→0

1
β
aG(vβ , vβ) � 0,

which prove the following convergence as β → 0:
β−1aG(vβ , vβ) → 0. (100)

From here, in addition to (95), we obtain the property
vβ/

√
β → 0 strongly in H2

γ0
(G).

After that, in addition to convergence (94), we can prove the convergence
wβ → w0 strongly in H2

0 (Ω). (101)
Indeed, as the weak convergence of the sequence wβ to w0 is verified, it suffices to show that the following statement
is valid as β → 0:

aΩ(wβ , wβ) → aΩ(w0, w0). (102)
From Eq. (92), we obtain

aΩ(wβ , wβ) = −aG(vβ , vβ)/β + (h, vβ)G + (f, wβ)Ω.
By virtue of Eqs. (95) and (100), the expression in the right side of this inequality has a limit equal to (f, w0)Ω,
i.e., as β → 0, we have

lim aΩ(wβ , wβ) = (f, w0)Ω.
With allowance for Eq. (99), we obtain Eq. (102), which proves convergence (101).
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